Problem 1.22

Jerk

The rate of change of acceleration is known as "jerk." Find the direction and magnitude of jerk for a particle moving in a circle of radius R at angular velocity ω. Draw a vector diagram showing the instantaneous position, velocity, acceleration, and jerk.

Solution

A particle moving in a circle with radius R and angular velocity ω has the position vector,

$$
\mathbf{r}(t)=\langle R \cos \omega t, R \sin \omega t\rangle
$$

Differentiate both sides with respect to t three times to obtain the jerk.

$$
\left.\begin{array}{rl}
\mathbf{r}^{\prime}(t) & =\mathbf{v}(t)
\end{array}=\langle-R \omega \sin \omega t, R \omega \cos \omega t\rangle, \begin{array}{rl}
\mathbf{r}^{\prime \prime}(t) & =\mathbf{a}(t)
\end{array}=\left\langle-R \omega^{2} \cos \omega t,-R \omega^{2} \sin \omega t\right\rangle\right)
$$

The magnitude of jerk is

$$
\begin{aligned}
|\mathbf{j}(\mathbf{t})| & =\sqrt{\left(R \omega^{3}\right)^{2} \sin ^{2} \omega t+\left(-R \omega^{3}\right)^{2} \cos ^{2} \omega t} \\
& =\sqrt{\left(R \omega^{3}\right)^{2}} \\
& =R \omega^{3},
\end{aligned}
$$

and the direction of jerk is

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{-R \omega^{3} \cos \omega t}{R \omega^{3} \sin \omega t}\right) \\
& =\tan ^{-1}(-\cot \omega t) \\
& =-\tan ^{-1} \cot \omega t .
\end{aligned}
$$

Figure 1: This figure illustrates the position (blue), velocity (red), acceleration (green), and jerk (purple) vectors for $t=0, t=\pi / 2, t=\pi$, and $t=3 \pi / 2$ for the special value of $\omega=1$. In this case the vectors all have the same magnitude R (generally they are different).

